| Chemistry 12: | Electrochemistry | 1 | |---------------|------------------|---| | Review Works | heet | | - 1. When a substance is reduced, it - a. loses electrons. - b) causes oxidation. c. undergoes oxidation. - d. increases in oxidation number. - 2. Identify the oxidizing agent in the following equation: $$2H^{+}_{(aq)} + Pb_{(s)} \rightarrow H_{2(g)} + Pb^{2+}_{(aq)}$$ - 3. An example of reduction is - a. $\operatorname{Mn}_{(s)} \to \operatorname{Mn}^{2+}_{(aq)}$ - a. $Mn_{(s)} \rightarrow Mn_{(aq)}$ b. $H^{+}_{(aq)} + MnO_{4}^{-}_{(aq)} + K^{+}_{(aq)} + OH_{(aq)}^{-} \rightarrow K^{+}_{(aq)} + MnO_{4}^{-}_{(aq)} + H_{2}O_{(l)}$ c. $Mn^{2+}_{(aq)} + S^{2-}_{(aq)} \rightarrow MnS_{(s)}$ d) $MnO_{2(s)} + 4H^{+}_{(aq)} + 2e^{-} \rightarrow Mn^{2+}_{(aq)} + 2H_{2}O_{(l)}$ - 4. A strip of Zn metal is placed into 0.1M Ga(NO₃)₃ and its surface darkens. From this observation it may be concluded that Ga³⁺ is a - a. weaker reducing agent than Zn²⁺ - b. weaker oxidizing agent than Zn²⁺ - c. stronger reducing agent than Zn²⁺ stronger oxidizing agent than Zn²⁺ - 5. Which of the following oxidizing agents will react spontaneously with Br at standard conditions? - a. H⁺ - c. NO_3^- in acid Cr₂O₇²⁻ in acid - 6. Which of the following most readily loses electrons? - a. Ag | 7. Which of the following could be a product of a reaction in which SO₃²⁻ acts as a reducing agent? a. SO₄²⁻ b. SO₂ c. S₂O d. S₂O₈²⁻ | | |--|--| | 8. Given the half-cell reaction S₂O₈²⁻ + 2H⁺ → 2HSO₄⁻, which of the following will balance electric charges? (a.) Add 2e⁻ to the left side b. Add 2e⁻ to the right side c. Add 3e⁻ to the left side d. Add 3e⁻ to the right side | | | Use the following information to answer question 9. | | | Cl ₂ is pale yellow in CCl ₄
Cl ⁻ is colorless in water | | | Br ₂ is red in CCl ₄ | | | Br is colorless in water | | | 9. Aqueous Cl ₂ and aqueous KBr are shaken with CCl ₄ in a test tube. The CCl ₄ layer is red and the water layer is colorless. What is the best conclusion? | | | (a.) Br is oxidized | | | b. No reaction occurred. | | | c. Cl₂ was oxidizedd. CCl₄ was oxidized | | | d. CC14 was oxidized | | | 10. What is the oxidation number of Cr in CrO ₄ ² -? | | | (b) +6 | | | c. +8 | | | d. +10 | | | 11. The oxidation number for a sulphur atom in Na ₂ S ₂ O ₅ is a2 b. +1 c. +4 d. +8 | | | 12. In which of the following compounds does carbon have an oxidation number of -2? a. CO b. CO₂ c. CH₂O d. CH₃OH | | 13. Consider the following reaction: $$3I_2 + 3H_2O \rightarrow 6H^+ + 5I^- + IO_3^-$$ In this reaction atoms in I₂ undergo - a. oxidation only - b. reduction only - c. neither oxidation nor reduction - (d) both oxidation and reduction - 14. Which one of the following half-reactions is balanced? - a. $IO_{3(aq)} + 6H^{+}_{(aq)} + 5e^{-} \rightarrow I_{2(s)} + 2H_{2}O_{(l)}$ - b. $ClO_{(aq)}^{-} + H_2O_{(1)} + 2e^- \rightarrow Cl_{(aq)}^{-} + 2OH_{(aq)}^{-}$ c. $SO_4^{2^-}(aq) + 8H_{(aq)}^{+} + 6e^- \rightarrow H_2S_{(g)} + 4H_2O_{(1)}$ - d. $NO_{2(aq)} + H_2O_{(1)} + 2e^- \rightarrow 2H^+_{(aq)} + NO_{3(aq)}$ - 15. Of the following metals, which would be the best one to use to make a container in which to store an aqueous copper(II) sulfate solution? - a.) Ag (s) - b. Fe (s) - c. Ni (s) - d. Pb (s) - 16. The correctly balanced half-reaction for $ClO_{(aq)} \rightarrow Cl_{(aq)}$ in a basic solution is - a. $2H^{+}_{(aq)} + ClO^{-}_{(aq)} + 2e^{-} \rightarrow Cl^{-}_{(aq)} + H_2O^{-}_{(l)}$ - b. $H_2O_{(1)} + ClO_{(aq)}^{-} \rightarrow Cl_{(aq)}^{-} + 2OH_{(aq)}^{-} + 2e^{-}$ c. $H_2O_{(1)} + ClO_{(aq)}^{-} + 2e^{-} \rightarrow Cl_{(aq)}^{-} + 2OH_{(aq)}^{-}$ d. $2H_{(aq)}^{+} + ClO_{(aq)}^{-} \rightarrow Cl_{(aq)}^{-} + H_2O_{(l)}^{-} + 2e^{-}$ - 17. Experiments were performed with three metal strips, X, Y, and Z, and their corresponding 1.0M nitrate solutions, X(NO₃)₂, Y(NO₃)₂ and Z(NO₃)₃. - metal Y reacted with X^{2+} but not with Z^{3+} . - metal X did not react with any of the solutions Which of the following gives the metals in order of <u>decreasing</u> strength as reducing agent (strongest reducing agent first)? - (a) Z, Y, X - b. X, Y, Z - c. Y, Z, X - d. X, Z, Y 18. Which of the following sets of coefficients balances the equation $$_HNO_{3 (aq)} + _H_2S_{(aq)} \rightarrow _NO_{(g)} + _S_{(s)} + 4H_2O_{(l)}$$ - a. 4, 2, 4, 1 - b. 4, 1, 4, 1 c) 2, 3, 2, 3 d. 2, 1, 2, 1 - 19. Which of the following agents would reduce $\operatorname{Sn}^{4+}_{(aq)}$ to $\operatorname{Sn}^{2+}_{(aq)}$? - a. Fe $_{(s)}$ b. $\Gamma_{(aq)}$ c. $Fe^{2+}_{(aq)}$ - d. Ag (s) - 20. In a particular redox reaction, the oxidation number of phosphorus changed from -3 to 0. From this it may be concluded that phosphorus - a. lost 3 electrons and was reduced. - (b) lost 3 electrons and was oxidized. - c. gain 3 electrons and was reduced. - d. gain 3 electrons and was oxidized. ## SHORT ANSWER QUESTIONS 21. Balance the following half-reaction occurring in acid solution. $$TiO_4^{2-} \rightarrow Ti$$